Crossing angles at injection

(...)

W. Herr

What determines the crossing angle at 450 GeV?

- Beam-beam considerations:
 - > As large as possible, sets lower limit, limits β^*
- **Aperture:**
 - **Small, sets upper limit, limits** β^*
- **Operation:**
 - Should make operation simple, compatible with above, e.g.:
 - Constant during cycle, orbit feedback
 - Use of magnets (e.g. MCBX, ramping, ..)
 - ...

What determines the crossing angle at 450 GeV?

Essential input:

- **Emittance**
- Bunch spacing (Scaling rules depend on spacing !!)
- β_{inj}^* (Scaling rules depend on β_{inj}^*)
- The "nominal" \pm 170 μ rad (maximum possible in 1999)^{*)}
 - For nominal emittance (3.75 μ m, as assumed in 1999)
 - For nominal aperture $(n1 \ge 7, as assumed in 1999)$
 - Bunch spacing 25 ns

*) Nota bene:
$$\beta_{inj}^* = 18$$
 m in 1999

What determines the crossing angle at 450 GeV?

Other considerations:

- **Spectrometer magnets in IP2 and IP8**
 - Field strength
 - Polarity
- Solenoids (small effect)
- Sign of angle (in IP5 and IP8)

Separation for different ϵ_n , α

	\mathbf{With}	present	layout	and	β_{inj}^*	= 11	\mathbf{m}	(IP1/5	5)
--	-----------------	---------	--------	-----	-----------------	------	--------------	--------	------------

$\epsilon_n \; (\mu \mathbf{m})$	\pm 170 μrad	\pm 140 $\mu { m rad}$	\pm 120 μ rad
$3.75 \ \mu m \ (nom)$	$pprox$ 9.5 σ	$pprox$ 8.0 σ	$pprox$ 7.0 σ
$2.70 \ \mu\mathbf{m}$	$pprox$ 11.0 σ	$pprox$ 9.5 σ	$pprox$ 8.5 σ
$2.10 \ \mu \mathbf{m}$	$pprox$ 12.5 σ	$pprox$ 10.5 σ	$pprox$ 9.5 σ

Minimum separation

> In presence of nominal parallel separation

> Valid for 25 ns, 50 ns, 75 ns

Separation for different ϵ_n , α

With present layout and $\beta_{inj}^* = 11 \text{ m (IP1/5)}$

$\epsilon_n \; (\mu \mathbf{m})$	\pm 170 μrad	\pm 140 $\mu { m rad}$	\pm 120 μ rad
$3.75 \ \mu m \ (nom)$	$pprox$ 9.5 σ	$pprox$ 8.0 σ	$pprox$ 7.0 σ
$2.70 \ \mu\mathbf{m}$	$pprox$ 11.0 σ	$pprox$ 9.5 σ	$pprox$ 8.5 σ
$2.10 \ \mu \mathbf{m}$	$pprox$ 12.5 σ	$pprox$ 10.5 σ	$pprox$ 9.5 σ

Minimum separation

Arguments for/against $\alpha = \pm 170 \mu rad$

> Works for nominal emittance and bunch spacing

> Plenty of separation for smaller emittances

Requires more aperture

Requires ramping down

Arguments for/against $\alpha = \pm 120/140 \mu rad$

- > Works for smaller emittances
- Could keep same value during cycle
 - Requires smaller emittances:
 - Can we keep emittance small for 25 ns ?
 - Do we want 25 ns (.. or 72 bunches/train) ?
 - We might screw up the emittance \underline{and} IP8

Recommendation

> We do not yet know the effect of long range interactions

Crossing angle of $\alpha = \pm 170 \ \mu rad$ is a safer bet

> ... but may be overkill