LHC Beam Operation Committee meeting March 27th, 2012 CERN, Geneva, Switzerland

2012 LHC aperture measurements Preliminary results

S. Redaelli, R. Assmann, R. Bruce, D. Jacquet, M. Giovannozzi, W. Hofle, G. Müller, M. Pojer, B. Salvachua, G. Valentino, D. Valuch, J. Wenninger

Introduction

Aperture measurements crucial for the determination of beam-based performance reach! High pressure in 2012 to address the feasibility of 60 β^* .

Introduction

Or Aperture at injection

Aperture at 4 TeV, 60 cm

Conclusions

2011 aperture measurements

2012 aperture measurements

2012 aperture measurements

ADT-driven controlled blow-up

Smoothly commissioned in 2012 after preliminary MD tests in 2011.

Used so far with wellseparated individual bunches.

Method for global measurements

Basic idea:

- 0. Beam based alignment of TCP collimators
- 1. Emittance blow-up to find bottleneck (coll. open)
- 2. Perform a collimator scan and repeat blow-up
- 3. When losses move to the TCP, the **precise** knowledge of **collimator gap** gives the **N**_σ
- 4. Can be used for approximated LOCAL measurements with orbit bumps Refined calculations use normalized BLM

Example of one fast scan

Data processing

Fast scans only used for comparison for 2 planes, after we gained good confidence with the blow-up parameters

Results for all planes

Summary of injection aperture

Global aperture 2012					
	Η[σ]	V[σ]			
B1	11.5 (Q6R2)	12.5 (Q4L6)			
B2	12.5 (Q5R6)	13.0 (Q4R6)			

Beam	Beam-based centre shifts				
	H [mm]	V [mm]			
B1	0.00 (Q6R2)	-0.80 (Q4L6)			
B2	0.50 (Q5R6)	0.25 (Q4R6)			

Global aperture 2010			Global aperture 2011		
	Η[σ]	V[σ]		Η[σ]	V[σ]
B1	12.5 (Q6R2) 13	.5 (Q4L6)	B1	12.0 (Q6R2)	13.0 (Q4L6)
B2	14.0 (Q5R6) 13.	.0 (Q4R6)	B2	12.5 (Q5R6)	13.0 (Q4R6)

Same locations found in the last years for the bottlenecks. We are loosing 0.5-1.0 sigmas per year. Check with the SU team?

Centring the orbit at the bottlenecks

Local 3- or 4-corrector local bumps at the global bottlenecks Beam-based alignment of TCP collimators to determine precise the width of the beam halo (for detailed off-line analysis): $A = \Delta_{co} + N_{env} \sigma$

Global aperture at 4 TeV

Injected 7-8 "small" probe bunches of ~5e9 protons, emittance > 3-4 microns Selective blow-up of individual bunches

Collimator settings:

- End-of-ramp coarse settings in IR3/6/7 \rightarrow global bottlenecks at the MQX's
- Align TCP and TCT collimators for precise, nominal optics for TCT gaps

- TCT scans to determine settings that expose the triplet: ADT driven loss rates Orbit for probe intensity

Example: B1-IR5-H (i)

Scans with TCTs in both IRs

Summary of 4 TeV, $\beta^* = 60$ cm (Separation = 650 μ m, crossing = 145 μ rad)

	Η[σ]	V[σ]
B1	11.5 - 12.0 (Q2-L5)	11.0 - 11.5 (Q3-L1)
B2	11.5 - 12.0 (<mark>Q3-R1</mark>)	11.0 - 11.5 (Q3-R1)

Assumptions to achieve 60 cm: 10.8 sigma

→ Preliminary conclusions: OK

Reminder / caveats:

- Measurements performed with probe orbit reference: to be repeated after nominal bunch reference is established, with final TCT settings!
- Unexpected loss location in IR1 for B2-h (separation plane)

Case B2 - H

Case B2 - H

Case B2 - H

Conclusions

We performed global aperture measurements at injection and with squeeze/separated beams

The ADT blow-up works great!

- Faster measurements at injection
- Global measurements possible at 4 TeV for the first time

The LHC aperture looks still good!

- No limits at injection, even if we loose ~ 0.5 σ / year
- We can continue with the commissioning at 60 cm

Outlook:

- Repeat 4 TeV measurements with nominal reference
- Investigate further B2-H case. Symmetric scans of the triplet?
- Off-momentum aperture measurements
- Local scans: TDI and BTV regions. IR2 for ion squeeze.
- IR8 injection aperture for vertical crossing studies?

Standard commissioning or MD?