Observations on luminosity curves or "the beam never forgets"

Giulia Papotti (BE-OP-LHC)

and after fruitful discussions with W. Herr, G. Arduini, J. Wenninger, G. Rumolo, S. Gilardoni, K. Cornelis, B. Mikulec, ...

outline

- bunch-by-bunch (bbb) luminosity curves
 - IBS and injectors
- emittances at start of fill
 - IBS and injectors
- burn-off
- present one recent fill (2646), but looked at many others

bunch-by-bunch luminosities

- wide spread among bunches in luminosity production
 - up to a factor 2

lumi curves parametrization

- double exponential: $L(t) = a e^{-t/b} + c e^{-t/d}$ - y = a e^{-x/b} + c e^{-x/d}
 - not a physical model, but a good empirical description that allows parametrization
 - a+c = L(t=0)
 - b, d time constants for the luminosity decay
- fit the double exponential to bunch-by-bunch curves

$$L_{tot}(t) = \sum_{i=1}^{N_b} L_i(t) = \sum_{i=1}^{N_b} \left(a_i e^{-t/b_i} + c_i e^{-t/d_i} \right)$$

• and look at a_i, b_i, c_i, d_i for all bunches in that fill

bbb lumi parameterization

traces of the injectors

- overlap according to structure according to beam production at injectors
 - 36 bunch batches from PS to SPS
 - 144 bunch batches from SPS to LHC

- can see structures from injectors in bbb lumi curves!
 - SPS injection kicker (especially on 225 ns batch spacing)
 - PS splittings and transient beam loading
 - PSB rings differences (6 bunch structure)

example (2011)

example (2011)

example (2011) -2-

example (2012)

- ongoing collaboration with injectors supervisors and operators for optimization
 - S. Cettour Cave, K. Cornelis, S. Gilardoni, G. Metral, B. Mikulec, ...

ϵ at start of stable beams

- emittance from fBCT and $a_i + c_i$
 - IBS... ~0.1um over filling

$\Delta\epsilon$ from injectors

- feedback to PS and PSB:
 - e.g. PSB ring 1? if reproduced over few fills!
 - e.g. PS-SPS transfer optimization (action this morning!)

$\Delta\epsilon$ from injectors

- highlighted emittance problem last week (w19/20)
 - after specific lumi indication
 - requires BSRT support for distinguishing H or V

sanity checks

 good agreement between ATLAS and CMS data good agreement in emittance from a+c and from max lumi

burn off

- use IP1, IP5 and IP8 lumi curves
 - neglect IP2
- total cross section (from LPC): 101 mb

- e.g. 16h fill last Saturday
 - 20% percent of protons used for luminosity
 - snapshot at end of fill (16 h fill)
 - colliding in IP8 only much lower burn off

collide in IP: **1 5 8 - 1 5 - 8**

other losses -1-

- losses that are not burn off: $\sim 10\%$ of total intensity
 - snapshot at end of fill (16 h fill)
 - very similar despite head-on collision pattern

other losses -2-

- 'SPS transfer' pattern, cause not clear
 - GR: SPS e-cloud?

conclusions

- big spread in bunch pair luminosity production
 - injector variations seem to dominate
 - IBS less important
- fit to luminosity curves allow parametrization
 - see memory of the beam of production scheme
 - see PSB, PS, SPS traces
- emittance at start of collisions can be studied and possibly improved
 - collaboration ongoing across injector complex
- burn off important part of losses
 - structure on remaining losses visible and to be understood