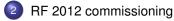
RF and ADT 2012 commissioning

P. Baudrenghien, W. Hofle, P. Maesen, T. Mastoridis, D. Valuch

LBOC, February 21st 2012

æ

ヘロア 人間 アメヨア 人間 アー


High Level RF

- Four klystrons (M2B1) have been modified to support 500 kW DC
 - Similar work to M1B2 last year
- The last 8 LEP type Drivers have been replaced by new ones so that now they are all new
- All LEP type focus power supplies have also been replaced by new ones

LLRF

- Most SMC cables in Faraday cage were replaced (at least 200), we want to make sure this process did not introduce any errors (access to UX45 might be necessary)
- A dedicated bunch-per-bunch phase measurement was installed in the Faraday cage (UX45): reduce temperature dependence
 - System was connected to PU and Cavity Sum by 350 m long cables previously

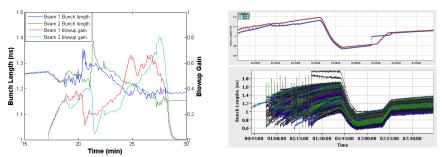
æ

ヘロア 人間 アメヨア 人間 アー

ADT

RF 2012 commissioning

Business as usual:


- Cavity conditioning, powering tests (started last Wednesday). Accesses will be necessary
- LLRF re-commissioning
 - One-turn Feedback added to commissioning sequence. Already commissioned in October 2011 though and operated for two months
- Cavity phasing with beam (4 hours)

What's new:

- New longitudinal emittance blowup. Prepare for batch-by-batch blowup
- Bunch Length Choice. Develop/Implement Bunch Length Leveling?
- A new FESA class will be installed, which will control at each injection the 3 phases for the incoming batch: longitudinal damping, batch blow-up, inclusion in the main phase loop. Debugging will be necessary

New longitudinal emittance blowup

Why are we upgrading?

- Smoother, better controlled blowup. May help with heating issues (to be studied)
- More functionalities → allow the implementation of batch-by-batch blowup at injection
 - Help reduce transverse emittance increase at 450 GeV due to IBS (essential with SPS Q20 optics)

Bunch Length

- Our understanding is that there are two structures with heating correlated to bunch length
 - Beam screens: sufficient margin
 - MKI: marginal dependence on bunch length over the range of possible values
- Negative consequences of increase: luminosity reduction due to the geometric factor, increased beam loss ("effective" bucket at about 1.4 ns in physics)
- We suggest starting with 1.25 ns (2011 operation), and once we reach stable operation test a couple of fills at \pm 100 ps to see the effect on heating and luminosity

• Bunch Length Leveling

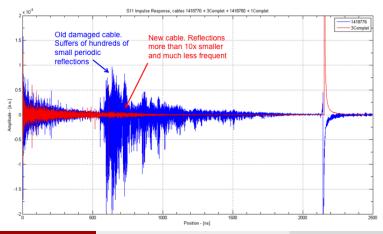
- Currently we have 12 MV in physics. Could go up to 16 MV (B1), 15 MV (B2), but with increased risk of tripping
- Room for 7.5% (B1), 6% (B2) reduction in σ_z less than 100 ps
- Could consider smaller emittance at end of ramp, smaller voltage at start of physics

ADT

æ

ヘロア 人間 アメヨア 人間 アー

ADT


Planned for TS 2011

- Loss maps and controlled blow-up using the ADT
 - Firmware in place, the user interface is being prepared
- Feasibility study for Q measurement using the ADT data Witness bunches method
 - The firmware is being prepared
- ADT gain modulation within turn
 - Firmware ready
- Preparation for complete recabling in LS1 (>20km of 7/8" smooth-wall coaxial cable)
 - Pickup cables of Horizontal Beam 2 unit were replaced this technical stop

(日)

New cables

 Newly installed pickup cables have much cleaner impulse response which should reduce noise in the Beam Position measurement

Presented by T. Mastoridis BE-RF

ADT re-commissioning after the TS

- Validation of the new firmware (gain modulation within the turn), requires revalidation of the abort gap and injection cleaning MCS parameters (2-4 hours)
 - Mandatory, significant changes in the firmware introduced
- Commissioning of the recabled system HB2: 4 hours
 - Mandatory, otherwise system HB2 not operational
- Verification of the loop parameters (phasing, delay): 6 hours.
 - Mandatory annual system check up with beam
- Intensity settings for 1.4 and 1.7e11 ppb: 2x4 hours
 - If not done running above 1.4e11ppb not possible
- Commissioning of the blow-up for loss maps: 8 hours (min)
 - User interface being prepared (Delphine), functionality requested by the OP
- Automatic gain adjustment (pilot/nominal): if ready in the sequencer
 - Requires modification of the LHC sequencer (Delphine), if time allows

Re-commissioning after the TS: total 3-4 shifts, preferably not consecutive