

Beam-beam tune footprint viewer

X. Buffat, T. Pieloni, W. Herr, G. Arduini

- Make a footprint as automatically as possible based on data extracted from the control system
- Usage :
 - Working point optimisation
 - Understanding of measurements/observations

Outline

- What is a tune footprint?Why do we care?
- How to make one with the footprint viewer?
- Future work

Beam-beam effects

- Amplitude detuning
- Emittance effect
- Orbit effect
- Dynamic aperture reduction
- Dynamic beta
- Coherent motion
- ...

Beam-beam footprint

Non linear force

amplitude detuning

Depends on

- Xing (value and plane!)
- Separation (value and plane!)
- Intensity
- Emittance
- Optics

Footprint

- Representation of amplitude detuning in 2D
- Can be obtained via tracking of and FFT
- Some relevant properties
 - Sensitive to resonances
 - Scales NON linearly with emittance
 - Scales linearly with intensity
 - Shifts with initial tune

Footprint

- Representation of amplitude detuning in 2D
- Can be obtained via tracking of and FFT
- Some relevant properties
 - Sensitive to resonances
 - Scales NON linearly with emittance
 - Scales linearly with intensity
 - Shifts with initial tune

Why do we care?

File Control Help

Run simulation

Different resonance
 Norm. H emitta... 2.5E-6
Norm. V emitta... 2.5E-6
Norm. V emitta... 2.5E-6

Norm. V emitta... 2.5E-6

 Different Landau damping properties

We have no measurement of detuning yet (Schottky, slot numbers ∈ [0;3564]: gated BBQ)

Real example IP8 private bunches

- Selected bunches lose more
- Selected bunches go unstable

Real example separation scan

0.65 mm // sep

1

0.0 mm // sep

Application workflow

- Input
 - injection scheme from LSA (AK D. Jacquet, G. Papotti)
 - thin lens optics from Online Model Definitions (AK G. Müller)
 - Machine and beam parameters from user
- Run MAD-X simulation via JMAD (AK K. Fuchsberger)
- Plot footprint
- Allow basic manipulation of the footprint.

HOWTO start

CCM – Ihcop LHC control Beam control Beam-beam footprint viewer

HOWTO setup beams

File Control Help

- Set up parameters for both beams
 - Specifiy the observedbeam and bunch

bunch = (RFBucket-1)/10

HOWTO setup machine

- Setup machine parameters
 - Optics (Thin lens required!)
 - Xing
 - separation

HOWTO setup simulation

File Control Help	
Beam Machine	Track
Nb of sigma	
Nb of angle	6
Intensity scaling	1.0
Beam number:	1
Slot numbers ∈ [0;3564]:	
995	
_	
Run sin	nulation

- Setup simulation parameter
 - Test particle distribution for the footpint
 - Small intensity scaling factor to avoid deformation from resonance

HOWTO run

- Run simulation
- Wait for the footprint to appear
 - Multiple footprint can be drawn on the same plot
- ~ 1 min per bunch!
 - ~ 1 day for the whole beam

HOWTO check resonances

 Select visible resonance lines

HOWTO manipulate

Scale, shift

No dynamic beta, Discard the effect of resonance

Future work

- What can be done if found to be useful during operation/MD
 - Import measurement of beam parameters from Logging database
 - Import machine parameters from LSA database
 - Improve manipulation of footprints
 - Have an online mode (based on online tune, intensity and emittance measurement and simple scaling laws)
- Tune scan would enable us to find good/bad spots
- Any other proposal or feedback are welcome